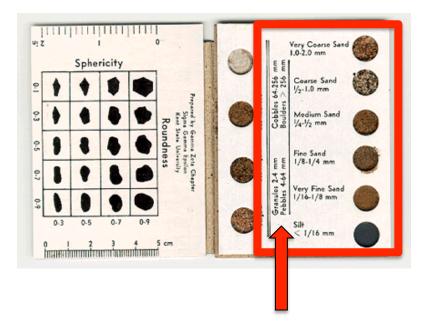
Name:

Period: _____ Date: _____

Sedimentary Rock Lab

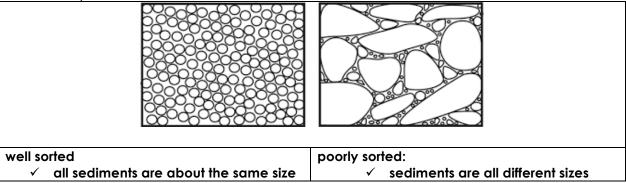
(Formation, Properties, and Ancient Depositional Environments)

BIG IDEA:


Earth's immense history is "recorded" in the rocks. Sedimentary rocks tell us about ancient environments and can hold fossils.

FOCUS QUESTIONS:

- How can you use physical and chemical properties of sedimentary rocks to identify them?
- ✓ How can you use these characteristics to determine what the environment once was where they were formed?


PROCEDURE:

- 1. Pick a sample. Note which number you take.
- 2. Make sure you record the following data in the correct row.
- 3. Use the grain size chart and/or ruler to determine the sediment size(s) (quantitative) that compose rock.
 - a. If the sediments are too small to measure with a ruler, you will need to use your finger to feel the textures on the right hand side of the booklet and compare.
 - b. You may also want to use a hand lens or microscope to compare textures.
 - c. Record the **sediment SIZE(S)** in the data table. (If the rock is not made of sediments, then record if it is crystals or something else.)
- 4. Use this information to determine the **NAME** (qualitative) of the sediment(s) in the data table. (Remember, sediments are classified by size. Each size is a different type of sediment.)
 - a. If you notice the sediments are something else (such as shells) record this information as well.

Classification of Sediments by SIZE:							
Grain Size Range Name of							
	Loose						
	Sediment						
> 2 mm	gravel						
1/16 to 2 mm	sand						
	*note: sand can be different sizes						
	– see grain size						
	chart to the left						
1/256 to 1/16 mm	silt						
< 1/246 mm	clay						

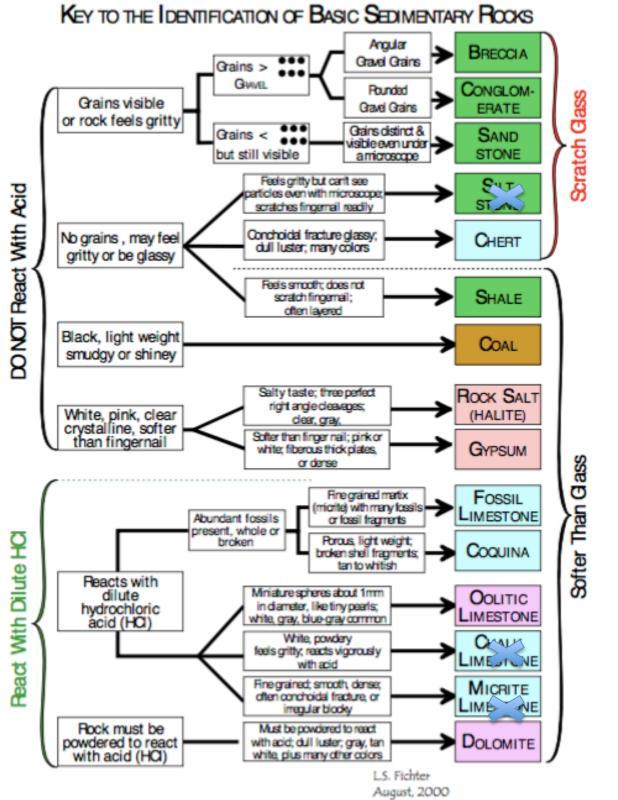
- 5. Observe the sediment **SORTING**.
 - a. Are the sediments well sorted, meaning they are all about the same size?
 - b. Or are the sediments **poorly sorted**, meaning they are all different sizes?
 - c. See picture below for clarification.

- 6. Record your findings in the data table.
- 7. Use the **acid test** to determine if the mineral **calcite** is present.
 - a. Use the dropper to add ONE drop of vinegar (an acid) to the rock sample.
 - b. Observe closely for signs of a chemical reaction. This included bubbling that you can see and/or hear.
 - c. If there is a reaction, then there is calcite in the rock.
- 8. Record observations in the data table.
- 9. RINSE AND DRY THE ROCK OFF AS BEST YOU CAN.
- 10. Use the glass plate to do a **scratch test** for mineral **hardness**.
 - a. Quartz is a mineral with a Moh's hardness of 7. Glass is made of quartz sand and also has a Moh's hardness of 7.
 - **b.** If something scratches glass, it is the **same hardness as glass or harder**.
 - c. Calcite (also a mineral) has a hardness of 3.
- 11. Record other observations such as:
 - a. the shape of sediments (rounded or angular)
 - b. if there are shells, fossils, or other organic parts
 - c. color(s) of sediments
 - d. any other important details (layers, etc.)
- 12. Analyze observations to determine the classification of how the rock **formed**. Conclude it the rock is clasitic, organic, or chemical. Record your conclusion in the data table.
- 13. Analyze observations and use the **identification charts** below to identify the **NAME** of the rock.
 - a. If there is a property or word on the chart you do not know, use your resources to find out. Example: "conchoidal fracture" is not something we have covered.

14. SAVE THE LAST COLUMN ABOUT ANCIENT DEPOSITIONAL ENVIRONMENTS TO DO TOGETHER AS A CLASS.

DATA	:								
	TEXTURE			Calcite	Scratch	Other	<u>Classify</u>	Rock Name	Ancient
er	<u>Sediment</u> <u>Size(s)</u>	Sediment Name	Sorting • well	<u>Present</u> (fizzing	• same or	Observatio <u>-ns</u> • sediment	<u>Rock</u> Formation	 use observations 	<u>Depositional</u> Environment(s)
Numbe	 SIZE of sedim- ent(s) 	 TYPE of sedime- nt(s) 	sorted • poorly sorted	/chem. react.)	harder than glass	shape (angular or	 clastic organic chemical 	and identification charts	Infer based on observations, rock formation, and
Sample Number	 or if crystals present 	• draw an "x" if crystals	 draw an "x" if crystals 	• yes • no	(≥7+) • softer than glass (<7)	rounded) • fossils present? • color • layers			additional research.
	(step 3c)	(step 4)	(step 5)	(step 7)	(step 10)	(step 11)	(step 12)	(step 13)	(step 14)
1									
2									
3									
4									
5									
6									
7									
8									

Conclusion Questions:


1. a. Which sample did you determine was CONGLOMERATE? _____ How did the sediments that make it up become rounded?

b. Do you think that the sediments that make up conglomerate had to be transported (eroded) a long distance? Explain.

- 3. Contrast how clastic sedimentary rocks and chemical sedimentary rocks look.
- 4. Could a sedimentary rock be both clastic and organic? Explain your reasoning. Give an example to prove your point.
- 5. Pick one rock you identified.
 - a. Which environment did you infer it formed in?
 - b. Explain your reasoning with evidence from the data table and the text.
 - c. A claims, evidence and reasoning chart may be helpful in planning your answer.
- 6. What other questions do you have?

SEDIMENTARY ROCK IDENTIFICATION KEY

	Detrital	Sedimentary Rocks	Chemical Sedimentary Rocks						
Clastic Texture (particle size)		Distinctive Properties	Rock Name		Composition	Distinctive Properties	Bock Name		
Gravel	201	Rounded rock or mineral fragments, typically poorly sorted	Conglomerate Breccia			Fine to coarse crystalline	L	Crystalline Lipsone	
Coarse (over 2 mm)	ACC -	Angular rock or mineral fragments, typically poorly sorted				No visible grains, may exhibit conchoidal fracture		5	
Sand Medium (1/16 to 2 mm)		Quartz grains, typically rounded, well sorted		Sandstone	Calcite, CaCO ₃ (effervesces in HCl)	Visible shells and shell fragments loosely cemented	i e s t o n e	Coquina	
		At least 25% feldspar, typically poorly sorted, angular fragments	Sandstone	~~~		Various size shells and shell fragments, well cemented		Fossiliferous Limestone	
		Mixture of sand and mud, typically poorly sorted	S	Gracke		Microscopic shells and clay, soft			
Silt/mud Fine (1/16 to 1/256 mm)		Mostly silt-size quartz and clay, blocky, gritty		Siltstone		Faint layering, may contain cavities or pores		Travertine	
Clay/mud Very fine (less than 1/256 mm)		Mostly clay, splits into layers, may contain fossils	P	Shale	Quartz, SiO ₂	Microcrystalline, may exhibit conchoidal fracture, will scratch glass	Chert (light colored)		
		Mostly clay, crumbles	2	Cla dne			Flint (dark colored)		
		easily						(banded)	
			Gypsum CaSO ₄ •2H ₂ O	Fine to coarse crystalline, soft	Rock Gypsum Rock Salt				
			Halite, NaCl	Fine to coarse crystalline, tastes salty					
					Altered plant fragments	Black brittle organic rock, may be layered	в	ituminous Coa	

http://geollab.jmu.edu/Fichter/SedRx/index.html